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The heterochirality of a 1:2 metal/Ph-pybox complex ion
was encyclopedically evaluated by ESIMS using pseudo-
racemic (R,R)- and (S,S)-Ph-pybox pair, which were unla-
beled/labeled by deuterium atoms, respectively. The hetero-
chiral complex was predominantly formed in all investigated 1:2
metal/Ph-pybox complex ions.

The bis(oxazolinyl)pyridine (Sub-pybox, Sub = substituent)
family of tridentate ligands were first developed by Nishiyama
and co-workers for enantioselective organometallic catalysis,1

and have also been used to generate chiral Lewis acid catalysts
with transition metals and lanthanides.2­6 Selective formation of
crystalline diastereomeric complexes has been observed in the
1:2 metal/Ph-pybox complex ([M(1)2]) as follows. Evans and
Jørgensen have both observed that, even using a M:1 ratio of
1:1, racemic 1 gave the near insoluble, catalytically inactive
complex [M(1R)(1S)]2+.3,4 Williams has reported that hetero-
chiral [Co(Sub-pybox)2] was formed selectively when Sub was
Ph; however, mixtures of homo- and heterochiral complexes
were formed when Sub was Me and Bz.5 This diastereoselec-
tivity was explained by the avoidance of steric interference
between Ph-substituents on different ligands in the heterochiral
complex and the possibility of favorable ³-stacking interactions
between the Ph-substituents of one pybox ligand with the
pyridine ring of another pybox ligand. Aspinall found that the
outcome of the reaction of Ln(OTf)3 with 2 equiv of racemic
Pri-pybox was dependent on the Ln3+ radius: Eu(OTf)3 gave
exclusively the heterochiral complexes [Eu(OTf)3(R-Pri-
pybox)(S-Pri-pybox)], whereas the use of Yb(OTf)3 produces
an exclusively racemic mixture of homochiral complexes
[Yb(OTf)2(R-Pri-pybox)2]+ and [Yb(OTf)2(S-Pri-pybox)2]+.6 Al-
though the metal dependency of the 1:2 metal/pybox complex
structure is interesting, previous structural analysis was solely
dependent on crystallographic analysis. Recently, chiral mass
spectrometry has been developed as a new analytical approach
for stereochemistry, which has the advantages of being a rapid
and simple analytical technique.7 Herein, we report the explicit
index of the heterochiral complex selectivity using electro-spray
ionization mass spectrometry (ESIMS).

Isotopic-labeling is a highly useful method for the discrim-
ination of a compound from the same structural compounds
using mass spectrometry.8 In the present study we used a
pseudo-racemic mixture of (R,R)- and (S,S)-Ph-pybox (1R and
1S-d, respectively) which was unlabeled/labeled with four
deuterium atoms at the 5-position of oxazoline (Figure 1).9 As
the labeled position is located on the outside of the tridentate
nitrogen atoms, the labeling has no influence on the formation of

complexes. 1S-d was synthesized from pyridine-2,6-dicarbonyl
chloride and (S)-phenylglycinol-d2, which was obtained from
the (S)-phenylglycine methyl ester by reduction using NaBD4

in THF.7,10 The deuteration rate of 71% was determined by
comparing the isotopic pattern with the theoretical pattern
(Figure S1).10

The sample was prepared by mixing 1R, 1S-d, and metal
nitrate at concentrations of 10, 10, and 20¯M in 10% methanol
in acetonitrile, respectively. The mixture was capped and left
undisturbed in a plastic bottle at room temperature for 24 h.

The ESIMS experiments were conducted on a ThermoQuest
LCQDECA with an ion trap instrument. The following instrument
and analytical conditions were used: spray voltage, 5 kV; spray
current, 0.10¯A; sheath gas flow rate, 29.2 units (roughly
0.78Lmin¹1); capillary voltage, 35.2V; heated capillary tem-
perature, 200 °C. The experiments were conducted in the
positive ion mode. Spectra shown represent the average of 60
scans, with each scan requiring 0.2 s. The sample was infused
via a syringe pump at a flow rate of 3¯Lmin¹1.

Typical mass spectra of Na and La systems are shown in
Figure 2. In the case of the Na system, the highest mass peak at
m/z 765 corresponds to the mass of the heterochiral complex ion
[Na(1R)(1S-d)]+, consisting of sodium and two Ph-pybox
ligands, in which the absolute configuration is different. The
inset to the figure shows the peaks around the RS-heterochiral
complex ion peak (circle). RR- (triangle) and SS-homochiral
(diamond) complex ion peaks were also observed four units
apart from the RS-homochiral complex ion peak. The peak
intensity should reflect the amount of each diastereomer when
the ionization efficiencies are the same. Thus, eq 1 provides the
diastereomeric excess of the heterochiral complex (deRS) in
forming the 1:2 metal/Ph-pybox complex.

deRS ¼ ðIRS � IRR � ISSÞ=ðIRS þ IRR þ ISSÞ ð1Þ
where deRS is the diastereomeric excess of the heterochiral
complex, IRS is the intensity of the RS-heterochiral complex ion
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Figure 1. Structure of the Ph-pybox showing the labeling with
and without deuterium atoms (1R, 1S, and 1S-d, respectively).
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[m/z: (m + 4)/charge], IRR is the intensity of the RR-homochiral
complex ion [m/z: m/charge], and ISS is the intensity of the SS-
homochiral complex ion [m/z: (m + 8)/charge].

As the isotopic purity of 1S-d was 71%, deRS was corrected
by its natural abundance. The ratio of IRR:IRS:ISS was 1:4.9:1 and
the deRS value of the Na system was 0.42, indicating that the
heterochiral complex ion was formed in preference to the
homochiral complex ion. In the case of the La system, the
highest mass peak at m/z 1005 corresponds to the heterochiral
complex ion [La(1R)(1S-d)(NO3)2]+. Interestingly, the peak for
the homochiral complex ion was never observed in the spectrum
and the deRS value is above 0.99, indicating that the heterochiral
complex was exclusively formed in the media. Aspinall and co-
workers reported that the formation of the lanthanide hetero-
chiral or homochiral complexes was dependent on the metal
radius and a heterochiral single crystal was obtained from metals
with larger radii such as Eu.6 Consequently, assuming that the
effect of the counter anion on complex formation is negligible, it
is clear that La exclusively forms the heterochiral complex.

DeRS values of all investigated metals and the metal radius
for the six coordination numbers11 are summarized in Table 1. In
the case of alkali metal systems, the peak intensities of the 1:2
metal/Ph-pybox complexes and the deRS values decreased as the
radius of the ions increased. Exiguous peaks were observed in
the Rb system due to its low ionization efficiency. In the case
of the transition-metal systems, single-charged [M(1)2(NO3)]+

complexes were observed in all bivalent metal systems, and
double-charged [M(1)2]2+ complexes were observed for Mn, Co,
Cu, and Zn systems. Interestingly, single- or double-charged
complexes may alternatively give exclusive deRS values when
nitrate is included as the ligand or the counter ion. In the case of
the lanthanides, [M(1)2(NO3)2]+ was observed. High deRS values
were observed from La to Er, and low deRS value was observed
in Tm. These phenomena suggested that radii smaller than Tm
give low deRS complexes, such as crystalline Yb complex
reported by Aspinall. The effects on the diastereoselectivity of
alkali metal systems against the metal radius were quite different
from those of lanthanide systems. In the case of the alkali
metals, the stable heterochiral complex formed in the smaller
ion because the electrons in the outermost shell is the spherical
s-type orbital and the steric interaction increases between the
two Ph-pybox ligands. In the case of the lanthanide systems, the
steric congestion at the smaller Tm center may have resulted in
the ejection of the nitrate ligand from the coordination sphere.

In summary, we have described an excellent heterochirality
determination ESIMS method for 1:2 metal/Ph-pybox com-
plexes using pseudo-racemic Ph-pybox unlabeled/labeled with
deuterium atoms. More than 20 metal ions were encyclopedi-
cally investigated by this method and the heterochirality of the
complexes with transition metals and lanthanides was positive,
indicating that Ph-pybox inherently forms heterochiral com-
plexes.
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Figure 2. ESI mass spectra of (a) [Na(1)2]+ and (b)
[La(1)2(NO3)2]+. Insets: (i) expanded view of the complex ion
peak. (ii) the theoretical isotope distribution. The circle, triangle,
and diamond symbols show the RS-heterochiral, RR-homochi-
ral, and SS-homochiral complex ions, respectively.
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